Preuves Interactives
et Applications

Burkhart Wol ff
www.lri.fr/ ~wolff/teach-material /2020-2021/M2-CSMR/index.html

Universite Paris-Saclay

Automated Proof Techniques
in Isabelle/HOL: An Introduction

B. Wolff - M1-PIA Automated Proofs

1/2/21

Revisions

- Elementary apply-style

(backward) proofs

» Elementary attributed

(forward) proofs

» Advanced apply-style

proof techniques

B. Wolff - MI1-PIA

Automated Proofs

Introduction to more
Advanced Proof Techniques

» Induction and case-splitting

» Rewriting

» Tableaux provers

» Paramodulation prover

» Presburger arithmetics prover
+ A magic device: sledgehammer

1/2/21 B. Wolff - MI1-PIA

Automated Proofs

Revision: Proof Commands

- Simple (Backward) Proofs:

lemma <thmname> :
[<contextelem>+ shows |"<¢>"

<proof>

— Where <contextelem> declare elements of a proof context I'
(list of assumptions)

— where <proof> are

— high-level proof method by(simp), by(auto), by(metis),
by(arith) or the ellipses sorry and oops

— apply-style (“imperative”) proofs, and
— structured (“declarative”) proofs.

1/2/21 B. Wolff - M1-PIA Automated Proofs

Revision: Proof Commands

» Core of structured proofs:

proof (<method>)
[case - fix - assumes - defs- have-]
show “<goal>" <proof>

next

next
[case - fix - assumes - defs- have-]

show “<goal>" <proof>
ged

» .. @ switch from procedural to declarative
style can be done by rephrasing the goals

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

A Summary of Proof Methods

* low-level procedures and
versions with explicit substitution:

— assumption

— rule_tac <subst> in <thmname>

— erule_tac <subst> in <thmname>

— drule_tac <subst> in <thmname>

* ... where <subst> is of the form:
x1=”cpl" and xn=”cprl

1/2/21 B. Wolff - M1-PIA Automated Proofs

A Summary of Proof Methods

low-level methods:

1/2/21

assumption (unifies conclusion vs. a premise)

subst [(asm)] <thmname>

does one rewrite-step
(by instantiating the HOL subst-rule)

rule <thmname>, rule_tac <subst> in <thmname>

PROLOG - like resolution step using HO-Unification

erule <thmname>, erule_tac <subst> in <thmname>

elimination resolution (for ND elimination rules)

drule <thmname>, drule_tac <subst> in <thmname>,

destruction resolution (for ND destriction rules)

B. Wolff - MI1-PIA

Automated Proofs

1/2/21

A Summary of Proof Methods

Local forward proof constructions by attributes

<thm>[THEN <thm>] (unifies conclusion vs. premise)

<thm>[OF <thm>] (unifies premise vs. conclusion)

<thm>[symmetric] (flips an equation)

<thm>[of (<term>1_)*] (instantiates variables)

<thm>[simp] (simplifies a thm)

<thm>[simp only: <thm>] (simplifies a thm)

B. Wolff - M1-PIA Automated Proofs

A Summary of Proof Methods

* advanced methods:

— insert <thmname>, insert <thmname>[,[,, of <subst>“]"]

inserts local and global facts into assumptions

— induct_tac “@”, induct “” [arbitrary : ,<variable>*]

searches for appropriate induction scheme using
type information and instantiates it

— case_tac “@”, cases “@”,

searches for appropriate case splitting scheme
using type information and instantiates it

1/2/21 B. Wolff - M1-PIA Automated Proofs

Rewriting

1/2/21 B. Wolff - M1-PIA Automated Proofs

The Simplifier

Supports Rewriting, in particular:

1/2/21

* Regular rewriting

* Rewriting of HO-Patterns,
» Ordered Rewriting

- Conditional Rewriting

- Context - Rewriting

» Automatic Case-Splitting

INSTRUMENTATION NECESSARY, so it is necessary
to tell which rule should be used HOW.
Simplification is quite predictable,
using[[simp_trace]] shuts on tracing of the rewriter

B. Wolff - M1-PIA Automated Proofs

The Simplifier
Regular Rewriting:

* Left-right of rewriting of rules of the form:

cti...th=e

where ct1 ... this the pattern (ceC), which

linear (all free variables distinct) and

FV(t1) u ... FV(t) 2 FV(e)

apply(simp add: <thm>)

1/2/21 B. Wolff - M1-PIA Automated Proofs

The Simplifier

Regular Rewriting: Examples.

Suc(x +Vy) = x + Suc(y)
(@a#A) @B)=a# (A @B)
(many computational rules
resulting from “fun” or “primrec”)

True A X=X
(@+b)+c=a+((b+c0C)
if Truethenbelsec=Db

1/2/21 B. Wolff - M1-PIA Automated Proofs

The Simplifier

Higher-order Patterns:
. constant head, i.e. of the form c t, ..t

- linear in free variables, FV(t1) u ... FV(tn) 2 FV(e)

- A-expressions !
- All Higher-Order Variables occur only in the form:

F(x, ... x) for distinct x

1

Example:
V(N X. P(xX) A Q(X)) = V(A X. P(X)) A (V(\ X.Q(X))

1/2/21 B. Wolff - M1-PIA Automated Proofs

The Simplifier
Supports Ordered Rewriting:

- There is an implicit wf-ordering on fterms.
Rewriting is only done if the re-written
term is smaller.

Example commutativity: a+b = b+a

With a little trickery, one can have ACI rewriting:

disj_comms(2): (PvQVvR)=(QvPVvR)
disj_comms(1): PvQ)=(QvP)

(
disj_ac(3): (PvQ)vR)=(PvQVvR)
disj_ac(2): (PvQvR)=(QvPvVvR)
disj_ac(1): (PvQ)=(QvP)
disj_absorb: (AvA)=A

(

disj_left_absorb: AvAvB)=(AvB)

1/2/21 B. Wolff - M1-PIA Automated Proofs

The Simplifier
Supports Rewriting, in particular:

- Conditional Rewriting

if_P: P — (if P then x else y) = x
if not P. "P= (fPthenxelsey)=y

apply(simp add: if P if not P)

(Not necessary, somewhere in the library it is stated:

declare if P [simp]if not P [simp]) ...)

1/2/21 B. Wolff - M1-PIA Automated Proofs

The Simplifier

Supports Rewriting, in particular:

- Context - Rewriting
HOL.if _cong:
b=c=
C=x=u=
CFc=>y=v)=

(if b then x else y) = (if ¢ then u else V)

HOL.conj_cong:
P=PP= P =Q=Q)=PArQ=(P' AQ)

apply(simp cong: if cong)

1/2/21 B. Wolff - M1-PIA Automated Proofs

The Simplifier
Supports Rewriting, in particular:

- Automatic Case-Splitting
(by a new type of rule which is NOT constant head)

split_if asm: P (if Qthenxelsey)=("(QA"Pxv QA Py))
split_if: P (if Qthen xelsey)=(Q—PxX)A (" Q—PYy))

For any data type (example: Option):

Option.option.split_asm:
P (case x of None = f1 | Some x = f2 x) =

(" (x=None A "Pflv(3a.x=Some a A 7P (f2 a))))
Option.option.split:
P (case x of None = f1 | Some x = f2 x) =

((x =None — P f1) A (va. x=Some a — P (f2 a)))

12021 apply(simp split: split_if asm split_if) ofs

Tableaux Prover

1/2/21 B. Wolff - M1-PIA Automated Proofs

fast, blast and auto

Tableaux Provers going back to LeanTAP

- For Logic terms and Set terms
-+ Uses all rules classified as
* introduction rule (keyword: intro)
works on conclusion of a goal
* elimination rule (keyword: elim)
works on assumptions of a goal
* destruction drule (keyword:: dest)
works on assumptions of a goal
applies destructively (eg. modus ponens)
* frule works on assumptions of a goal,
applies non-destructively

1/2/21 B. Wolff - M1-PIA Automated Proofs

fast, blast and auto
fast

 will apply safe intro/elim/drule's blindly

(these are rules like conjl, conjE, disjE, ... alll, exE, ...
Rules that will transform a subgoal into an equivalent
one, without loosing “logical content”)

- with backtrack on unsafe rules
(refines a subgoal into a logically stronger one,

can lead into a dead end).
fast works for HO-Terms, but is fairly slow slow

blast

* dito, but resticted to first-order reasoning

auto

* intertwines simp and blast
1/2/21 B. Wolff - M1-PIA Automated Proofs

fast, blast and auto

blast

- works similarly like fast, but is resticted to

first-order reasoning
- Substantially faster than fast, can treat transitivity rules.

auto
- Intertwines simp, blast, and fast

1/2/21 B. Wolff - M1-PIA Automated Proofs

A Summary of Proof Methods

advanced automated procedures:

— simp [add: <thmnhame>+] [del: <thmnhame>+]
[split: <thmname>+] [cong: <thmnhame>+]

— auto [simp: <thmname>+]

[intro: <t
[dest: <t

nmname>+] [intro [!]: <thmname>+]
nmname>+] [dest [!]: <thmname>+]

[elim: <t

nmname>+] [elim[!]: <thmname>+]

1/2/21

B. Wolff - M1-PIA Automated Proofs

Paramodulation Prover

1/2/21 B. Wolff - M1-PIA Automated Proofs

A Summary of Proof Methods

* another automated procedures based on

ordered paramodulation calculus
(Canonical ref: http://www.gilith.com/papers/metis.pdf)

— metis <thmname>+

v A, KoM A, -, Al pv-p>PUMEL
AV VA, AL V---VA,
INST FACTOR
AI[J]VVAH[U] S 7 A";l\/”'VA":'m. C O
AiV---VLV---VAm BiV:--VoLV---VBnpceq e

AiV---VALVBi1V---VB,

1/2/21 B. Wolff - M1-PIA Automated Proofs

http://www.gilith.com/papers/metis.pdf

Linear Arithmetic Prover

1/2/21 B. Wolff - M1-PIA Automated Proofs

A Summary of Proof Methods

advanced automated procedures based on
Coopers Algorithm for linear Presburger
Arithmetfics.

(Chaieb, Nipkow. Proof Synthesis and Reflection for Linear
Arithmetic. J. Automated Reasoning, 41:33-59, 2008)

— arith

1/2/21

B. Wolff - M1-PIA Automated Proofs

https://www21.in.tum.de/~nipkow/pubs/jar08.html
https://www21.in.tum.de/~nipkow/pubs/jar08.html
https://www21.in.tum.de/~nipkow/pubs/jar08.html
https://www21.in.tum.de/~nipkow/pubs/jar08.html

The Sledgehammer
Interface
(external provers)

1/2/21 B. Wolff - M1-PIA Automated Proofs

Magic Device:

* sledgehammer - command.

— asks well-known automatic first-order theorem provers
such as

* Vampire (binary resolution and superposition)

- E (FOL-Eq saturation prover)
* CVC4 (SMT prover)
s Z3 (SMT prover)

... if they can construct a proof based on all Isabelle theorems
existing at this point, reconstructs an Isabelle proof.

— does not work for proofs involving (deep) HO-Reasoning
and/or induction.

1/2/21 B. Wolff - M1-PIA Automated Proofs

Conclusion

- Isabelle focusses on interactive proofs

(enabling presentation of intermediate steps,
and structuring of proofs and prover
instrumentations)

... but this does not mean that there are no

automatic proof techniques available and that
classical ATP's are "better” in that sense ...

- Highly-tuned (=competition) ATPs can be faster,

1/2/21

though, due to more aggressive compilations

B. Wolff - M1-PIA Automated Proofs

