
1/2/21 B. Wolff - M1-PIA Automated Proofs

Preuves Interactives  
et Applications

 
Automated Proof Techniques 

in Isabelle/HOL: An Introduction

Université Paris-Saclay

Burkhart Wolff

www.lri.fr/~wolff/teach-material/2020-2021/M2-CSMR/index.html

1/2/21 B. Wolff - M1-PIA Automated Proofs

Revisions

● Elementary apply-style  
(backward) proofs

● Elementary attributed  
(forward) proofs

● Advanced apply-style  
proof techniques

1/2/21 B. Wolff - M1-PIA Automated Proofs

Introduction to more 
Advanced Proof Techniques

● Induction and case-splitting

● Rewriting

● Tableaux provers

● Paramodulation prover

● Presburger arithmetics prover

● A magic device: sledgehammer

1/2/21 B. Wolff - M1-PIA Automated Proofs

Revision: Proof Commands
● Simple (Backward) Proofs:  

 
 
 

– where <contextelem> declare elements of a proof context Γ
(list of assumptions)

– where <proof> are

– high-level proof method by(simp), by(auto), by(metis),

by(arith) or the ellipses sorry and oops

– apply-style (“imperative”) proofs, and

– structured (“declarative”) proofs.

lemma <thmname> :  
[<contextelem>+ shows]”<ϕ>”
<proof>

21/1/21 B. Wolff - M1-PIA Inductions and Structured Proofs

Revision: Proof Commands

● Core of structured proofs: 
 
 
 
 
 

● ... a switch from procedural to declarative 
 style can be done by rephrasing the goals

proof (<method>) 
[case - fix - assumes - defs- have-] 
show “<goal>” <proof>

next

 ...

next

 [case - fix - assumes - defs- have-] 

show “<goal>” <proof>

qed

1/2/21 B. Wolff - M1-PIA Automated Proofs

A Summary of Proof Methods

• low-level procedures and  
versions with explicit substitution:

– assumption

– rule_tac <subst> in <thmname>

– erule_tac <subst> in <thmname>

– drule_tac <subst> in <thmname>

• … where <subst> is of the form: 
 x1=”ϕ1” and xn=”ϕn

1/2/21 B. Wolff - M1-PIA Automated Proofs

A Summary of Proof Methods
• low-level methods:

– assumption (unifies conclusion vs. a premise)

– subst [(asm)] <thmname> 
 does one rewrite-step  
 (by instantiating the HOL subst-rule)

– rule <thmname>, rule_tac <subst> in <thmname>  

 PROLOG - like resolution step using HO-Unification

– erule <thmname>, erule_tac <subst> in <thmname> 
 elimination resolution (for ND elimination rules)

– drule <thmname>, drule_tac <subst> in <thmname>,

 destruction resolution (for ND destriction rules)

1/2/21 B. Wolff - M1-PIA Automated Proofs

A Summary of Proof Methods
• Local forward proof constructions by attributes 

 

– <thm>[THEN <thm>] (unifies conclusion vs. premise) 

– <thm>[OF <thm>]	 (unifies premise vs. conclusion) 

– <thm>[symmetric] (flips an equation) 

– <thm>[of (<term> | _)*] (instantiates variables) 

– <thm>[simp] (simplifies a thm) 

– <thm>[simp only: <thm>] (simplifies a thm)

1/2/21 B. Wolff - M1-PIA Automated Proofs

A Summary of Proof Methods
• advanced methods:

– insert <thmname>, insert <thmname>[„[„ of <subst>“]“] 

 inserts local and global facts into assumptions

– induct_tac “ϕ”, induct “ϕ” [arbitrary : „<variable>“]  
 
searches for appropriate induction scheme using 
 type information and instantiates it 

– case_tac “ϕ”, cases “ϕ”,  
 
 searches for appropriate case splitting scheme  
 using type information and instantiates it

1/2/21 B. Wolff - M1-PIA Automated Proofs

  
Rewriting

1/2/21 B. Wolff - M1-PIA Automated Proofs

The Simplifier
Supports Rewriting, in particular:

● Regular rewriting

● Rewriting of HO-Patterns,

● Ordered Rewriting

● Conditional Rewriting

● Context - Rewriting

● Automatic Case-Splitting 
 
INSTRUMENTATION NECESSARY, so it is necessary 
to tell which rule should be used HOW. 
Simplification is quite predictable,
using[[simp_trace]] shuts on tracing of the rewriter 
 
 

1/2/21 B. Wolff - M1-PIA Automated Proofs

The Simplifier
Regular Rewriting:

● Left-right of rewriting of rules of the form:

 c t1 … tn = e  

where c t1 … tn is the pattern (c∈C), which  
linear (all free variables distinct) and

 FV(t1) ∪ ... FV(tn) ⊇ FV(e)

 apply(simp add: <thm>)

1/2/21 B. Wolff - M1-PIA Automated Proofs

The Simplifier
Regular Rewriting: Examples.

Suc(x + y) = x + Suc(y)

(a # A) @ B) = a # (A @ B)

… (many computational rules  

 resulting from “fun” or “primrec”) 

True ∧ X = X

(a + b) + c = a + (b + c)

if True then b else c = b

…  

1/2/21 B. Wolff - M1-PIA Automated Proofs

The Simplifier
Higher-order Patterns:

● constant head, i.e. of the form c t1 ... tn

● linear in free variables, FV(t1) ∪ ... FV(tn) ⊇ FV(e)

● λ-expressions !

● All Higher-Order Variables occur only in the form: 

 F(x1 ... xn) for distinct xi

 
Example: 

 ∀(λ x. P(x) ∧ Q(x)) = ∀(λ x. P(x)) ∧ (∀(λ x.Q(x))

1/2/21 B. Wolff - M1-PIA Automated Proofs

The Simplifier
Supports Ordered Rewriting:

● There is an implicit wf-ordering on terms. 
Rewriting is only done if the re-written 
term is smaller.  
Example commutativity: a+b = b+a 

With a little trickery, one can have ACI rewriting:

disj_comms(2): 	 (P ∨ Q ∨ R) = (Q ∨ P ∨ R)

disj_comms(1): 	 (P ∨ Q) = (Q ∨ P)

disj_ac(3): 		 ((P ∨ Q) ∨ R) = (P ∨ Q ∨ R)

disj_ac(2): 		 (P ∨ Q ∨ R) = (Q ∨ P ∨ R)

disj_ac(1): 		 (P ∨ Q) = (Q ∨ P)

disj_absorb:	 	 (A ∨ A) = A

disj_left_absorb: 	 (A ∨ A ∨ B) = (A ∨ B)

1/2/21 B. Wolff - M1-PIA Automated Proofs

Supports Rewriting, in particular:

● Conditional Rewriting 
 
if_P: 	 	 P ⟹ (if P then x else y) = x 

if_not_P: 	 ¬ P ⟹ (if P then x else y) = y

 
 
apply(simp add: if_P if_not_P) 

(Not necessary, somewhere in the library it is stated: 
 declare if_P [simp] if_not_P [simp]) ...)

The Simplifier

1/2/21 B. Wolff - M1-PIA Automated Proofs

The Simplifier
Supports Rewriting, in particular:

● Context - Rewriting 
HOL.if_cong: 
 b = c ⟹

 (c ⟹ x = u) ⟹  
 (¬ c ⟹ y = v) ⟹  
 (if b then x else y) = (if c then u else v) 
 
HOL.conj_cong:  
 P = P' ⟹ (P' ⟹ Q = Q') ⟹ (P ∧ Q) = (P' ∧ Q') 

apply(simp cong: if_cong)

1/2/21 B. Wolff - M1-PIA Automated Proofs

The Simplifier
Supports Rewriting, in particular:

● Automatic Case-Splitting 
(by a new type of rule which is NOT constant head) 
 split_if_asm: P (if Q then x else y) = (¬ (Q ∧ ¬ P x ∨ ¬ Q ∧ ¬ P y)) 
 split_if: P (if Q then x else y) = ((Q ⟶ P x) ∧ (¬ Q ⟶ P y)) 

For any data type (example: Option):

Option.option.split_asm:

 P (case x of None ⇒ f1 | Some x ⇒ f2 x) =

 (¬ (x = None ∧ ¬ P f1 ∨ (∃a. x = Some a ∧ ¬ P (f2 a))))

Option.option.split:

 P (case x of None ⇒ f1 | Some x ⇒ f2 x) =

 ((x = None ⟶ P f1) ∧ (∀a. x = Some a ⟶ P (f2 a)))

apply(simp split: split_if_asm split_if)

1/2/21 B. Wolff - M1-PIA Automated Proofs

  
Tableaux Prover

1/2/21 B. Wolff - M1-PIA Automated Proofs

fast, blast and auto
Tableaux Provers going back to LeanTAP

● For Logic terms and Set terms

● Uses all rules classified as

• introduction rule (keyword: intro) 
works on conclusion of a goal

• elimination rule (keyword: elim) 
works on assumptions of a goal

• destruction drule (keyword:: dest) 
works on assumptions of a goal 
applies destructively (eg. modus ponens)

• frule works on assumptions of a goal, 
applies non-destructively

1/2/21 B. Wolff - M1-PIA Automated Proofs

fast, blast and auto
 fast

● will apply safe intro/elim/drule's blindly

 (these are rules like conjI, conjE, disjE, ... allI, exE, ...  
 Rules that will transform a subgoal into an equivalent  
 one, without loosing “logical content”)

● with backtrack on unsafe rules  
 (refines a subgoal into a logically stronger one,  
 can lead into a dead end). 
 fast works for HO-Terms, but is fairly slow slow

blast

● dito, but resticted to first-order reasoning

auto

● intertwines simp and blast

1/2/21 B. Wolff - M1-PIA Automated Proofs

fast, blast and auto

blast

● works similarly like fast, but is resticted to  
 first-order reasoning

● Substantially faster than fast, can treat transitivity rules. 

auto

● intertwines simp, blast, and fast

1/2/21 B. Wolff - M1-PIA Automated Proofs

A Summary of Proof Methods

• advanced automated procedures:

– simp [add: <thmname>+] [del: <thmname>+] 

 [split: <thmname>+] [cong: <thmname>+]

– auto [simp: <thmname>+] 

 [intro: <thmname>+] [intro [!]: <thmname>+]  
 [dest: <thmname>+] [dest [!]: <thmname>+] 
 [elim: <thmname>+] [elim[!]: <thmname>+]

1/2/21 B. Wolff - M1-PIA Automated Proofs

  
Paramodulation Prover

1/2/21 B. Wolff - M1-PIA Automated Proofs

A Summary of Proof Methods

• another automated procedures based on 
ordered paramodulation calculus 
(Canonical ref: http://www.gilith.com/papers/metis.pdf)

– metis <thmname>+

http://www.gilith.com/papers/metis.pdf

1/2/21 B. Wolff - M1-PIA Automated Proofs

  
Linear Arithmetic Prover

1/2/21 B. Wolff - M1-PIA Automated Proofs

A Summary of Proof Methods

• advanced automated procedures based on
Coopers Algorithm for linear Presburger
Arithmetics.

 
(Chaieb, Nipkow. Proof Synthesis and Reflection for Linear
Arithmetic. J. Automated Reasoning, 41:33-59, 2008) 
 

– arith

https://www21.in.tum.de/~nipkow/pubs/jar08.html
https://www21.in.tum.de/~nipkow/pubs/jar08.html
https://www21.in.tum.de/~nipkow/pubs/jar08.html
https://www21.in.tum.de/~nipkow/pubs/jar08.html

1/2/21 B. Wolff - M1-PIA Automated Proofs

  
The Sledgehammer 

Interface 
(external provers)

1/2/21 B. Wolff - M1-PIA Automated Proofs

Magic Device:
• sledgehammer - command.

– asks well-known automatic first-order theorem provers  
such as

• Vampire (binary resolution and superposition)

• E (FOL-Eq saturation prover)

• CVC4 (SMT prover)

• Z3 (SMT prover) 

... if they can construct a proof based on all Isabelle theorems
existing at this point, reconstructs an Isabelle proof.

– does not work for proofs involving (deep) HO-Reasoning  
and/or induction.

1/2/21 B. Wolff - M1-PIA Automated Proofs

Conclusion
● Isabelle focusses on interactive proofs 

(enabling presentation of intermediate steps, 
 and structuring of proofs and prover  
 instrumentations)

● ... but this does not mean that there are no 
automatic proof techniques available and that  
classical ATP's are “better” in that sense ...

● Highly-tuned (=competition) ATPs can be faster,  
though, due to more aggressive compilations

